MATH 101 Mathematics for Social Sciences I

Can Deha Karıksız

Özyeğin University Fall 2020/21

07.10.2020

Outline

Lecture 2

- Chapter 2 Functions and Graphs
 - Sec. 2.3 Combinations of functions
 - Sec. 2.4 Inverse functions

Definition

For any functions $f,g:X\to (-\infty,\infty)$, we define the **sum**, **difference**, **product** and **quotient** of f and g as follows:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$$

For each of these new functions, the domain is the set of all x that belong to both the domain of f and the domain of g, with the domain of the quotient also excluding any value of x for which g(x) = 0.

2.3 Combinations of functions

Example

If f(x) = 3x - 1 and $g(x) = x^2 + 3x$, find

1
$$(f+g)(x)$$
 2 $(f-g)(x)$ **3** $(f-g)(x)$ **4** $((1/2)f)(x)$

Solution:

$$(f+g)(x) = f(x) + g(x) = (3x-1) + (x^2+3x) = x^2+6x-1$$

$$(f-g)(x) = f(x) - g(x) = (3x-1) - (x^2 + 3x) = -1 - x^2$$

$$(fg)(x) = f(x)g(x) = (3x - 1)(x^2 + 3x) = 3x^3 + 8x^2 - 3x$$

$$f(x) = \frac{f(x)}{g(x)} = \frac{3x - 1}{x^2 + 3x}$$

$$((1/2)f)(x) = (1/2)f(x) = (1/2)(3x - 1) = \frac{3}{2}x - \frac{1}{2}$$

2.3 Combinations of functions

Composition

For functions $g:X\to Y$ and $f:Y\to Z$, the **composite** of f with g is the function $f\circ g:X\to Z$ defined by

$$(f\circ g)(x)=f(g(x))$$

where the domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f.

FIGURE 2.2 Composite of f with g.

2.3 Combinations of functions

Example

Let $f(x) = \sqrt{x}$ and g(x) = x + 1. Find

Solution:

$$(f \circ g)(x) = f(g(x)) = f(x+1) = \sqrt{x+1}$$

Note that although g(x)=x+1 can take any real number as an input, since $f(x)=\sqrt{x}$ can only take nonnegative values as input, the domain of $f\circ g$ is the interval $[-1,\infty)$.

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{x} + 1$$

The domain of $g \circ f$ is the interval $[0, \infty)$.

Remark: Generally, $f \circ g$ and $g \circ f$ are different functions!

2.3 Combinations of functions

Example

Express $h(x) = (2x - 1)^3$ as a composite.

Solution: To find h(x), we need to find 2x - 1 first and then cube the result. If we set g(x) = 2x - 1 and $f(x) = x^3$, then

$$h(x) = (2x - 1)^3 = (g(x))^3 = f(g(x)) = (f \circ g)(x)$$

which gives h as a composite of two functions.

The identity function

The function I defined by I(x) = x is called the **identity function**.

Note that for any function f, we have

$$f \circ I = f = I \circ f$$

Definition

Given a function $f: X \to Y$, if there exists a function f^{-1} satisfying

$$f \circ f^{-1} = I = f^{-1} \circ f$$

where I is the identity function, then f is called **invertible** and f^{-1} is called the **inverse** of f.

Remarks:

- If a function f is invertible, then it has a unique inverse f^{-1} .
- The equations above are equivalent to

$$f^{-1}(f(x)) = x$$
 for all x in the domain of f , $f(f^{-1}(y)) = y$ for all y in the range of f .

2.4 Inverse functions

Not all functions are invertible! We need an additional condition on f for its inverse to exist.

Definition

A function f is called **one-to-one** if

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$

for all x_1 and x_2 in the domain of f.

Another way to state the condition for f being one-to-one is

$$x_1 \neq x_2$$
 implies $f(x_1) \neq f(x_2)$.

This suggests that a one-to-one function should send distinct inputs to distinct outputs.

Theorem

A function f has an inverse f^{-1} if and only if it is one-to-one.

2.4 Inverse functions

Example

Show that a linear function f(x) = ax + b, $a \neq 0$ is one-to-one, and find its inverse.

Solution: Assume $f(x_1) = f(x_2)$. Then, $ax_1 + b = ax_2 + b$. Subtracting b from both sides we get $ax_1 = ax_2$. Since $a \neq 0$, we can divide both sides by a to get $x_1 = x_2$. This shows that $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all x_1 and x_2 . By definition, f is one-to-one. To find the inverse of f, we need to recall that $f(f^{-1}(x)) = x$ for all x in

the range of f. Applying f on the left hand side, we get $af^{-1}(x) + b = x$.

Solving for
$$f^{-1}(x)$$
 we obtain $f^{-1}(x) = \frac{x-b}{a} = \frac{1}{a}x - \frac{b}{a}$.

Note that the equation $f^{-1}(f(x)) = x$ is also satisfied, and $f^{-1}(x)$ is a linear function itself.

2.4 Inverse functions

Example

- Show that the function $f(x) = x^2$ is not invertible with its natural domain $(-\infty, \infty)$.
- Show that $f(x) = x^2$ becomes invertible if its domain is restricted to the interval $[0, \infty)$.

Solution:

1 The condition for being one-to-one is not satisfied in this case. For example, if we take $x_1 = 1$ and $x_2 = -1$, then

$$f(x_1) = (1)^2 = 1 = (-1)^2 = f(x_2)$$
, but $x_1 = 1 \neq -1 = x_2$.

① If we restrict the domain to $[0,\infty)$, then taking x_1 and x_2 in $[0,\infty)$,

$$f(x_1) = f(x_2) \Rightarrow (x_1)^2 = (x_2)^2 \Rightarrow \sqrt{(x_1)^2} = \sqrt{(x_2)^2} \Rightarrow x_1 = x_2.$$

2.4 Inverse functions

Example

Find $f^{-1}(x)$ if $f(x) = (x-1)^2$ for $x \ge 1$.

Solution: Note that f is one-to-one in the restricted domain $[1, \infty)$. An alternative way of finding the inverse of f is to solve the equation y = f(x) for x in terms of y (if possible) and then switching y to x. Let $y = (x-1)^2$ for $x \ge 1$. Then $\sqrt{y} = x-1$ and hence $x = \sqrt{y} + 1$. Switching y to x, we get $f^{-1}(x) = \sqrt{x} + 1$.

Some identities for inverses

1 If f and g are one-to-one, then $f \circ g$ is also one-to-one and

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}.$$

② If f is one-to-one, then $(f^{-1})^{-1} = f$.