Fuzzy Extension Principle and Fuzzy Arithmetic

Lecture 06

Extension Principle for Crisp Sets

\[x \rightarrow f(x) \rightarrow y \]

Extension is mapping from \(x \)-to-\(y \) through \(f(\cdot) \).

\(y = f(x) \)

\(f: X \rightarrow Y \) (From one universe to another universe)

\(x \): input variable

\(y \): input image of \(x \) under \(f(\text{output}) \)

\(y = f(x) \) \(\Rightarrow \) \(x = f^{-1}(y) \) (original image of \(y \))
Crisp Mapping

A mapping can also be expressed by a relation R on the Cartesian space $X \times Y$ with the characteristic function:

$$\chi_R(x, y) = \begin{cases}
1, & y = f(x) \\
0, & y \neq f(x)
\end{cases}$$
Extension Principle for Crisp Sets

Let A be a crisp set defined on X. The mapping $y = f(x)$ will result in a set B defined on Y such that

$$B = f(A) = \{y \mid \forall x \in A, \ y = f(x)\},$$

and the characteristic function of B will be

$$\chi_B(y) = \bigvee_{y = f(x)} \chi_A(x).$$

Here, B is another crisp set.

Example: Let $X = \{-2, -1, 0, 1, 2\}$ and $A = \{0, 1\}$ defined on X. $y = |4x| + 2$ mapping is applied to A, find B.

- $x = -2 \Rightarrow y = 10$
- $x = -1 \Rightarrow y = 6$
- $x = 0 \Rightarrow y = 2$
- $x = 1 \Rightarrow y = 6$
- $x = 2 \Rightarrow y = 10$

Thus, $Y = \{2, 6, 10\}$.
Extension Principle for Crisp Sets

Method #1:
Directly applying the formula:

\[\chi_B(y) = \frac{V}{y=f(x)} \chi_A(x) \]

\[\chi_A(0) = 1, \quad \chi_A(1) = 1 \]

\[\chi_A(-2) = \chi_A(-1) = \chi_A(2) = 0 \]
Extension Principle for Crisp Sets

Method #2:
Use relation matrix

\[
\begin{bmatrix}
2 & 6 & 10 \\
-2 & 0 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
R = 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2 & -1 & 0 & 1 & 2 \\
A = [0 & 0 & 1 & 1 & 0] \\
\end{bmatrix}
\]

Then, \(B = A \circ R \)

\[
B = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \quad B = \{2, 6\}
\]

Fuzzy Mapping
Extension Principle for Fuzzy Sets

\(A \): fuzzy set defined on \(X \)
\(y = f(x) \): functional transform or mapping
\(B \): image of \(A \) on \(X \) under \(f \).

\(B \) is a fuzzy set having universe of discourse \(Y \).

\[B = f(A) \]

\[\mu_B(y) = \bigvee_{f(x)=y} \mu_A(x) \]

Fuzzy Extension Principle

General definition: Suppose \(f \) is a mapping from an n-dimentional Cartesian product space \(X_1 \times X_2 \times \ldots \times X_n \) to a one dimentional universe \(Y \) such that \(y = f(x_1, x_2, \ldots, x_n) \) and suppose \(A_1, A_2, \ldots, A_n \) are n fuzzy sets in \(x_1, x_2, \ldots, x_n \) respectively. Then, the image of \(A_1, A_2, \ldots, A_n \) under \(f \) is given as:

\[\mu(y) = \max_{f(x_1, x_2, \ldots, x_n)=y} \left\{ \min(\mu_{A_1}(x_1), \mu_{A_2}(x_2), \ldots, \mu_{A_n}(x_n)) \right\} \]

Zadeh's extension principle
Fuzzy Extension Principle

Example:

\[A = \left\{ \frac{0.1}{-2} + \frac{0.4}{-1} + \frac{0.8}{0} + \frac{0.9}{1} + \frac{0.3}{2} \right\}, \quad f(x) = x^2 - 3 \]

\[B = \left\{ \frac{0.8}{-3} + \frac{(0.4 V 0.9)}{-2} + \frac{(0.1 V 0.3)}{1} \right\} \]

\[B = \left\{ \frac{0.8}{-3} + \frac{0.9}{-2} + \frac{0.3}{1} \right\} \]
Definition: A fuzzy vector is a vector containing fuzzy membership values.

\[
\vec{a} = \{a_1, \ldots, a_n\} = \left\{\mu_{A(a_i)} \right\} = \left\{\mu_{A_i} \right\}, \quad i = 1, \ldots, n
\]

\[
\vec{b} = \{b_1, \ldots, b_m\} = \left\{\mu_{B(b_j)} \right\} = \left\{\mu_{B_j} \right\}, \quad j = 1, \ldots, n
\]

\[
B = f(A) \quad \text{can be determined directly from} \quad B = A \circ R \quad \text{using vector form:}
\]

\[
B = a \circ R \quad \text{where} \quad R \quad \text{is an} \ n \times m \ \text{fuzzy relation matrix}
\]

Composition: \(\max - \min\)

\[
\hat{B}_{j} = \max_{i} \left(\min\left(a_{i}, r_{ij}\right)\right), \quad \hat{B}_{j} : j^{th} \text{element of the fuzzy image} \ \hat{B}.
\]
Fuzzy Extension Principle

Definition: If the input is a single element (a fuzzy singleton), the image of this singleton will be fuzzy and this case is termed as fuzzy transform.

\[B \subset f(x_i) \Rightarrow \mu_{B(x_i)} = r_{ij} \]

Example:

Let \(U = \{1, 2, 3\} \) and \(A = \{0.6, 0.9, 1\} \) defined on \(U \)

Mapping: \(v = f(u) = 2u - 1 \Rightarrow f(A) = ? \)

\(U = \{1, 2, 3\} \Rightarrow V = \{1, 3, 5\} \)

and \(f(A) = \{\frac{0.6}{1} + \frac{0.9}{3} + \frac{1}{5}\} \)
Mapping of more than one input variable:

Suppose \(U_1 \) and \(U_2 \) inputs are mapped to \(V \) through \(f(x_1, x_2) \). If the mapping is one-to-one, the same membership grades result but if the mapping is not one-to-one, maximum membership grades mapping to the same output variable is accepted.

\[
\mu_2(u_1, u_2) = \max \left[\min \left(\mu_1(x_1), \mu_2(x_2) \right) \right]
\]

If \(f(x_1, x_2) = V \)

Fuzzy Arithmetic and Fuzzy Numbers:

Let \(I \) and \(J \) be two fuzzy numbers with \(I \) defined on \(X \) and \(J \) defined on \(Y \), and let the symbol \(* \) denote a general arithmetic operation.

\[
* = \{ +, -, \times, \div \}
\]

Fuzzy Extension Principle

An arithmetic operation between these two fuzzy numbers, denoted \(I * J \), is a mapping to another universe, say \(Z \), and accomplished by using the extension principle:

\[
\mu_{I*J}(z) = \bigvee_{x * y = z} (\mu_I(x) \land \mu_J(y))
\]

Example:

\[
A = \{z | \text{approximately 2} \} = \left\{ \frac{0.6}{1} + \frac{1}{2} + \frac{0.8}{3} \right\}
\]

\[
B = \{z | \text{approximately 6} \} = \left\{ \frac{0.8}{5} + \frac{1}{6} + \frac{0.7}{7} \right\}
\]
Fuzzy Extension Principle

Let's map the product of \(\frac{2}{3} \) and \(\frac{6}{7} \) to a fuzzy number \(\frac{12}{21} \) = "approximately 12"

Extension principle:

\[
2 \times 6 = \left(\frac{0.6}{1} + \frac{1}{2} + \frac{0.8}{3} \right) \times \left(\frac{0.8}{5} + \frac{1}{6} + \frac{0.7}{7} \right) \\
= \left\{ \frac{\min(0.6,0.8)}{5} + \frac{\min(0.6,1)}{6} + \ldots + \frac{\min(0.8,0.7)}{21} \right\} \\
= \left\{ \frac{0.6}{5} + \frac{0.6}{6} + \frac{0.6}{7} + \frac{0.8}{10} + \frac{0.7}{12} + \frac{0.8}{14} + \frac{0.8}{15} + \frac{0.7}{21} \right\}
\]

Fuzzy Extension Principle

\(I = \left[\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array} \right] \) Let's find \(I+I \) using the extension principle:

\[
1+1 = \left(\frac{0.2}{0} + \frac{1}{1} + \frac{0.2}{2} \right) + \left(\frac{0.2}{0} + \frac{1}{1} + \frac{0.2}{2} \right) \\
= \left\{ \frac{\min(0.2,0.2)}{0} + \max\left(\frac{\min(0.2,0.1)}{1}, \frac{\min(1,0.2)}{1} \right) + \ldots + \frac{\min(0.2,0.2)}{4} \right\} \\
= \left\{ \frac{0.2}{0} + \frac{0.2}{1} + \frac{0.2}{2} + \frac{0.2}{3} + \frac{0.2}{4} \right\}
\]
Fuzzy Extension Principle

Example:

\[I = \left\{ \frac{0.3}{1}, \frac{1}{2}, \frac{0.7}{3} \right\} \]
\[J = \left\{ \frac{0.2}{4}, \frac{1}{5}, \frac{0.6}{6} \right\} \]
\[I + J = \left\{ \frac{0.3}{1} + \frac{0.7}{3}, \frac{1}{2}, \frac{0.6}{6} \right\} \]
\[= \left\{ \frac{\text{min}(0.3, 0.2)}{5}, \frac{\text{max}(\text{min}(0.3, 1), \text{min}(1, 1.2))}{6}, \frac{\text{max}(\text{min}(0.3, 0.6), \text{min}(1, 1), \text{min}(0.7, 0.2))}{7} \right\} \]
\[= \left\{ \frac{\text{max}(\text{min}(0.6, \text{min}(0.7, 1)), \text{min}(0.7, 0.6))}{8}, \frac{\text{min}(0.7, 0.6)}{9} \right\} = \left\{ \frac{0.2}{5}, \frac{0.3}{6}, \frac{1}{7}, \frac{0.7}{8}, \frac{0.6}{9} \right\} \]

Fuzzy Extension Principle

Example: We have two fuzzy sets \(\Lambda \) and \(B \), each defined on its own universe as follows:

\[\Lambda = \left\{ \frac{0.2}{1}, \frac{1}{2}, \frac{0.7}{4} \right\} \quad \text{and} \quad B = \left\{ \frac{0.5}{1}, \frac{1}{2} \right\} \]

We wish to determine the membership values for the algebraic product mapping

\[f(\Lambda, B) = \Lambda \times B \text{ (arithmetic product)} \]
\[= \left\{ \frac{\text{min}(0.2, 0.5)}{1}, \frac{\text{max}[\text{min}(0.2, 1), \text{min}(0.5, 1)]}{2}, \frac{\text{max}[\text{min}(0.7, 0.5), \text{min}(1, 1)]}{4}, \frac{\text{min}(0.7, 1)}{8} \right\} \]
\[= \left\{ \frac{0.2}{1}, \frac{0.5}{2}, \frac{1}{4}, \frac{0.7}{8} \right\} \]